How hard will the robots make us work?

The robots are watching over hotel housekeepers, telling them which room to clean and tracking how quickly they do it. They’re managing software developers, monitoring their clicks and scrolls and docking their pay if they work too slowly. They’re listening to call center workers, telling them what to say, how to say it, and keeping them constantly, maximally busy. While we’ve been watching the horizon for the self-driving trucks, perpetually five years away, the robots arrived in the form of the supervisor, the foreman, the middle manager. 

These automated systems can detect inefficiencies that a human manager never would — a moment’s downtime between calls, a habit of lingering at the coffee machine after finishing a task, a new route that, if all goes perfectly, could get a few more packages delivered in a day. But for workers, what look like inefficiencies to an algorithm were their last reserves of respite and autonomy, and as these little breaks and minor freedoms get optimized out, their jobs are becoming more intense, stressful, and dangerous. Over the last several months, I’ve spoken with more than 20 workers in six countries.For many of them, their greatest fear isn’t that robots might come for their jobs: it’s that robots have already become their boss. 

In few sectors are the perils of automated management more apparent than at Amazon. Almost every aspect of management at the company’s warehouses is directed by software, from when people work to how fast they work to when they get fired for falling behind. Every worker has a “rate,” a certain number of items they have to process per hour, and if they fail to meet it, they can be automatically fired. “IT’S LIKE LEAVING YOUR HOUSE AND JUST RUNNING AND NOT STOPPING FOR ANYTHING FOR 10 STRAIGHT HOURS, JUST RUNNING.”

When Jake* started working at a Florida warehouse, he was surprised by how few supervisors there were: just two or three managing a workforce of more than 300. “Management was completely automated,” he said. One supervisor would walk the floor, laptop in hand, telling workers to speed up when their rate dropped. (Amazon said its system notifies managers to talk to workers about their performance, and that all final decisions on personnel matters, including terminations, are made by supervisors.)

Jake, who asked to use a pseudonym out of fear of retribution, was a “rebinner.” His job was to take an item off a conveyor belt, press a button, place the item in whatever cubby a monitor told him to, press another button, and repeat. He likened it to doing a twisting lunge every 10 seconds, nonstop, though he was encouraged to move even faster by a giant leaderboard, featuring a cartoon sprinting man, that showed the rates of the 10 fastest workers in real time. A manager would sometimes keep up a sports announcer patter over the intercom — “In third place for the first half, we have Bob at 697 units per hour,” Jake recalled. Top performers got an Amazon currency they could redeem for Amazon Echos and company T-shirts. Low performers got fired. 

“You’re not stopping,” Jake said. “You are literally not stopping. It’s like leaving your house and just running and not stopping for anything for 10 straight hours, just running.”

After several months, he felt a burning in his back. A supervisor sometimes told him to bend his knees more when lifting. When Jake did this his rate dropped, and another supervisor would tell him to speed up. “You’ve got to be kidding me. Go faster?” he recalled saying. “If I go faster, I’m going to have a heart attack and fall on the floor.” Finally, his back gave out completely. He was diagnosed with two damaged discs and had to go on disability. The rate, he said, was “100 percent” responsible for his injury. 

Every Amazon worker I’ve spoken to said it’s the automatically enforced pace of work, rather than the physical difficulty of the work itself, that makes the job so grueling. Any slack is perpetually being optimized out of the system, and with it any opportunity to rest or recover. A worker on the West Coast told me about a new device that shines a spotlight on the item he’s supposed to pick, allowing Amazon to further accelerate the rate and get rid of what the worker described as “micro rests” stolen in the moment it took to look for the next item on the shelf. 

People can’t sustain this level of intense work without breaking down. Last year, ProPublica, BuzzFeed, and others published investigations about Amazon delivery drivers careening into vehicles and pedestrians as they attempted to complete their demanding routes, which are algorithmically generated and monitored via an app on drivers’ phones. In November, Revealanalyzed documents from 23 Amazon warehouses and found that almost 10 percent of full-time workers sustained serious injuries in 2018, more than twice the national average for similar work. Multiple Amazon workers have told me that repetitive stress injuries are epidemic but rarely reported. (An Amazon spokesperson said the company takes worker safety seriously, has medical staff on-site, and encourages workers to report all injuries.) Backaches, knee pain, and other symptoms of constant strain are common enough for Amazon to install painkiller vending machines in its warehouses. 

The unrelenting stress takes a toll of its own. Jake recalled yelling at co-workers to move faster, only to wonder what had come over him and apologize. By the end of his shift, he would be so drained that he would go straight to sleep in his car in the warehouse parking lot before making the commute home. “A lot of people did that,” he said. “They would just lay back in their car and fall asleep.” A worker in Minnesota said that the job had been algorithmically intensified to the point that it called for rethinking long-standing labor regulations. “The concept of a 40-hour work week was you work eight hours, you sleep eight hours, and you have eight hours for whatever you want to do,” he said. “But [what] if you come home from work and you just go straight to sleep and you sleep for 16 hours, or the day after your work week, the whole day you feel hungover, you can’t focus on things, you just feel like shit, you lose time outside of work because of the aftereffects of work and the stressful, strenuous conditions?”“WE ARE NOT ROBOTS.”

Workers inevitably burn out, but because each task is minutely dictated by machine, they are easily replaced. Jake estimated he was hired along with 75 people, but that he was the only one remaining when his back finally gave out, and most had been turned over twice. “You’re just a number, they can replace you with anybody off the street in two seconds,” he said. “They don’t need any skills. They don’t need anything. All they have to do is work real fast.” 

There are robots of the ostensibly job-stealing variety in Amazon warehouses, but they’re not the kind that worry most workers. In 2014, Amazon started deploying shelf-carrying robots, which automated the job of walking through the warehouse to retrieve goods. The robots were so efficient that more humans were needed in other roles to keep up, Amazon built more facilities, and the company now employs almost three times the number of full-time warehouse workers it did when the robots came online. But the robots did change the nature of the work: rather than walking around the warehouse, workers stood in cages removing items from the shelves the robots brought them. Employees say it is one of the fastest-paced and most grueling roles in the warehouse. Reveal found that injuries were more common in warehouses with the robots, which makes sense because it’s the pace that’s the problem, and the machines that most concern workers are the ones that enforce it. 

Last year saw a wave of worker protests at Amazon facilities. Almost all of them were sparked by automated management leaving no space for basic human needs. In California, a worker was automatically fired after she overdrew her quota of unpaid time off by a single hour following a death in her family. (She was rehired after her co-workers submitted a petition.) In Minnesota, workers walked off the job to protest the accelerating rate, which they said was causing injuries and leaving no time for bathroom breaks or religious observance. To satisfy the machine, workers felt they were forced to become machines themselves. Their chant: “We are not robots.”

Every industrial revolution is as much a story of how we organize work as it is of technological invention. Steam engines and stopwatches had been around for decades before Frederick Taylor, the original optimizer, used them to develop the modern factory. Working in a late-19th century steel mill, he simplified and standardized each role and wrote detailed instructions on notecards; he timed each task to the second and set an optimal rate. In doing so, he broke the power skilled artisans held over the pace of production and began an era of industrial growth, and also one of exhausting, repetitive, and dangerously accelerating work. 

It was Henry Ford who most fully demonstrated the approach’s power when he further simplified tasks and arranged them along an assembly line. The speed of the line controlled the pace of the worker and gave supervisors an easy way to see who was lagging. Laborers absolutely hated it. The work was so mindless and grueling that people quit in droves, forcing Ford to double wages. As these methods spread, workers frequently struck or slowed down to protest “speedups” — supervisors accelerating the assembly line to untenable rates. 

We are in the midst of another great speedup. There are many factors behind it, but one is the digitization of the economy and the new ways of organizing work it enables. Take retail: workers no longer stand around in stores waiting for customers; with e-commerce, their roles are split. Some work in warehouses, where they fulfill orders nonstop, and others work in call centers, where they answer question after question. In both spaces, workers are subject to intense surveillance. Their every action is tracked by warehouse scanners and call center computers, which provide the data for the automated systems that keep them working at maximum capacity.

At the most basic level, automated management starts with the schedule. Scheduling algorithms have been around since the late 1990s when stores began using them to predict customer traffic and generate shifts to match it. These systems did the same thing a business owner would do when they scheduled fewer workers for slow mornings and more for the lunchtime rush, trying to maximize sales per worker hour. The software was just better at it, and it kept improving, factoring in variables like weather or nearby sporting events, until it could forecast the need for staff in 15-minute increments. NO ONE EVER EXPERIENCES A LULL

The software is so accurate that it could be used to generate humane schedules, said Susan Lambert, a professor at the University of Chicago who studies scheduling instability. Instead, it’s often used to coordinate the minimum number of workers required to meet forecasted demand, if not slightly fewer. This isn’t even necessarily the most profitable approach, she noted, citing a study she did on the Gap: it’s just easier for companies and investors to quantify cuts to labor costs than the sales lost because customers don’t enjoy wandering around desolate stores. But if it’s bad for customers, it’s worse for workers, who must constantly race to run businesses that are perpetually understaffed. 

Though they started in retail, scheduling algorithms are now ubiquitous. At the facilities where Amazon sorts goods before delivery, for example, workers are given skeleton schedules and get pinged by an app when additional hours in the warehouse become available, sometimes as little as 30 minutes before they’re needed. The result is that no one ever experiences a lull. 

The emergence of cheap sensors, networks, and machine learning allowed automated management systems to take on a more detailed supervisory role — and not just in structured settings like warehouses, but wherever workers carried their devices. Gig platforms like Uber were the first to capitalize on these technologies, but delivery companies, restaurants, and other industries soon adopted their techniques.

There was no single breakthrough in automated management, but as with the stopwatch, revolutionary technology can appear mundane until it becomes the foundation for a new way of organizing work. When rate-tracking programs are tied to warehouse scanners or taxi drivers are equipped with GPS apps, it enables management at a scale and level of detail that Taylor could have only dreamed of. It would have been prohibitively expensive to employ enough managers to time each worker’s every move to a fraction of a second or ride along in every truck, but now it takes maybe one. This is why the companies that most aggressively pursue these tactics all take on a similar form: a large pool of poorly paid, easily replaced, often part-time or contract workers at the bottom; a small group of highly paid workers who design the software that manages them at the top. “THE ROBOT APOCALYPSE IS HERE.”

This is not the industrial revolution we’ve been warned about by Elon Musk, Mark Zuckerberg, and others in Silicon Valley. They remain fixated on the specter of job-stealing AI, which is portrayed as something both fundamentally new and extraordinarily alarming — a “buzz saw,” in the words of Andrew Yang, coming for society as we know it. As apocalyptic visions go, it’s a uniquely flattering one for the tech industry, which is in the position of warning the world about its own success, sounding the alarm that it has invented forces so powerful they will render human labor obsolete forever. But in its civilization-scale abstraction, this view misses the ways technology is changing the experience of work, and with its sense of inevitability, it undermines concern for many of the same people who find themselves managed by machines today. Why get too worked up over conditions for warehouse workers, taxi drivers, content moderators, or call center representatives when everyone says those roles will be replaced by robots in a few years? Their policy proposals are as abstract as their diagnosis, basically amounting to giving people money once the robots come for them. 

Maybe the robots will someday come for the truck drivers and everyone else, though automation’s net impact on jobs so far has been less than catastrophic. Technology will undoubtedly put people out of work, as it has in the past, and it’s worth thinking about how to provide them a safety net. But one likely scenario is that those truckers will find themselves not entirely jobless but, as an analysis by the UC Berkeley Center for Labor Research and Education suggests, riding along to help mostly autonomous vehicles navigate tricky city streets, earning lower pay in heavily monitored and newly de-skilled jobs. Or maybe they will be in call center-like offices, troubleshooting trucks remotely, their productivity tracked by an algorithm. In short, they will find themselves managed by machines, subject to forces that have been growing for years but are largely overlooked by AI fetishism.

“The robot apocalypse is here,” said Joanna Bronowicka, a researcher with the Centre for Internet and Human Rights and a former candidate for European Parliament. “It’s just that the way we’ve crafted these narratives, and unfortunately people from the left and right and people like Andrew Yang and people in Europe that talk about this topic are contributing to it, they are using a language of the future, which obscures the actual lived reality of people right now.”

This isn’t to say that the future of AI shouldn’t worry workers. In the past, for jobs to be automatically managed, they had to be broken down into tasks that could be measured by machines — the ride tracked by GPS, the item scanned in a warehouse. But machine learning is capable of parsing much less structured data, and it’s making new forms of work, from typing at a computer to conversations between people, ready for robot bosses.

Leave comment

Your email address will not be published. Required fields are marked with *.